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RMF Current Drive "<
driven electron current -\ A“A — rotating field B,,
oz oot | (1Y T |
\

B, field coils — ({1

+ ‘Drag’ Electrons Along With Rotatl ng Radial Field
— Must have w, <w << w,, for electrons, but not ions, to follow rotation

¢ Electrons Magnetized on Rotating Field Lines (w_t >> 1)

— Necessary for efficient current drive
— Absolutely necessary for rotating field penetration
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Summary of Basic Physics “~e

¢ RMF flux build-up and sustainment is made possible by
synchronous electron current drive which allows penetration.

¢ Penetration is possible when RMF force, 2B, 2/mr, exceeds
resistive drag, nym_,n.wr, which we characterize as

g:WC3>|:L ch:eBW d= ﬂ
Ng d m, \ mw

o |f g>1 then penetration will proceed just far enough to reverse
the external confinement field. Current is sustained on the inner

field lines by induced inward flow.

+ High FRC &fnand low separatrix density resultsin narrow edge
current layer. Thereisadelicate balance between having too few

and too many electrons.
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RMF Penetration Calculations
for Simple Fixed Column i
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- , h =10 MAtm (10x classical)
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RMF flux drive pushes FRC
against plasma tube wall
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STX RMF Driven FRC Tee

STX Measured Axial and RMF Fields
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Flux conserver causes external field to increase as FRC expands.

In this experiment separatrix, r,» 20.7 cm, is slightly outside plasmatube wall, r,,
= 20 cm, but density is essentially zero there (b, » 0).

Internal field exceeds external field dueto RMF field contribution.
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Density and B, Profiles Consistent ==
With high & low n(r), & j =newr =<
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RMF Penetration Calculation
Including FRC Quas 2-D Dynamics
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RMF Radial Pressure Gradient >~ <

o Fi=dBy PR Ko LV
z . 2 h// r
¢ Analytic solution for edge current layer: < T b
}E,arep gro
B, = | oi2"a ﬂyzsw\/%egd*ﬂ
+ J,and B, p/4 out of phase so S f b
. 1. _mao2Bla Fgo
<Jqu> - ‘JZHBQ‘ BT —€
2.2 &d* gma r
2

W

¢ Resultant radial pressure P = (SFrdr = E IS strong.

 Thisisin addition to §,B fithat counters diffusion: v, = - Bi(m jo +(1,B, )/ ne)

z
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Average Torque Based

Calculation of Flux Build-up g

Average &, ~ &, - Fyufine
Ty =T/ (d*/a) T,»(%2A)T
T, =2paB,,/m,

df /dt = 2(T,, - T, )/ne&?

(0]

df T, _2pB,

~ (0]

dt  nea’ ne

= 0.004 ,va(G) . mWb
n(lozom‘3) msec

Flux build-up continues until | ~> g(due
to field compression and density
increase). Resultsin large ..
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Details of Steady Solution ~ ®r<-

0.015

¢ True steady state requires £, =0
everywhere.

Eq = h’\jq VB, - <VezBr>

¢ ‘Quasi-2D’ numerical solution shows
how this can occur due to overal
inward flow, with RMF current drive
only in outer edge.

¢ Calculation duplicates measured B,(r)
profile.

¢ Numerical flux build-up rate » ssimple
analytic rate for stipulated h. = 40 M\~
m.

B (T)
o

o
o
=
J1

u( cm / s e c )

0 50 100 150 200 250
t frsec)

ICC_2000



.' w )r{u Wil :
i Wifﬂli P f’"i’i!//////// bl

ICC_2000



Rapid Flux Build-up From Fully

B G )

Red - vacuum shot
Black - with plasma
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Flux builds up to 0.37 mWb in 100 nrsec in agreement with cal culations.

Flux then decays slowly: most likely due to overheating and too low a density to

produce current reversal in equilibrium edge layer, or to inability to sustain inward v,
throughout column due to 2-D effects.

lon spin-up could also reduce maximum synchronous current, but not seen from

Doppler broadening measurements
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¢ FRC transitions to high beta column. Thisisonly possible steady solution if total
line density istoo low to maintain | ,¢= & fewa?/2 > 2B/ my
¢ & = 25x10'8, w=2.2x10° a= 0.2, B, = 0.009:
| ,¢= 18 kA/m, 2B/ m, = 14 KA/m
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Flux Build-up Starting From =
Low Beta Column i
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+ Steady state achievable under different operating conditions.
¢ Flux decay rate after RMF turnoff P h. ~40 mMA/m.
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Electron rotation appears

‘n’ calculated from
synchronous electron
rotation agrees with n
inferred from pressure
balance assuming fixed
‘best fit’ temperature over
region of RMF penetration.

Veylowdensityatr=0
and separatrix (r ~ 20 cm).

RMF field contributes to
confinement with B,(0) >

Be(ry)

synchronous in driven edge

100

Ilglll

n=j,/ewr =
(dB,/dr)/myewr

. n=(B2B2)2mKkT —

Magnetic Field (G)
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Density (108 m™)
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t =260 nsec
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Estimate of STX Resistivity ##<"
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Numerical calculations match measured flux build-up using h, =40 MAfm.
Flux lifetime without RMF drivet; =r2/16(h.m) ~80 nsP h. =40 mAtm.
Implied absorbed Ohmic power = h. §2dV ~ 3.5 h.(MAV-m) kW b 140 kW.
E, = 1L.5NkT,=8 Jwould yieldt = 57 ms.

STX RMF power supply is 1.5 kJ and decays ~500Jin 0.5 ms; ~ 1000kW
with and without plasma. Best estimate is extra plasma absorbed power
~60kW. Thisimplieslower h. where current flows. Better measurements of
absorbed Ohmic power are critical.
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Maximum Energy Input to FRC Determined ==,

> <
by Energy Loss from RMF Supply

4 C
Energy loss from RMF Capacitor 3
Bank:
Vacuum Discharge ® 1,470J <E.> _|
Plasma Discharge ® 1,520J R 2:‘

1
To eliminate energy spent on initial
ionization and radiation losses: e
Vacuum DE - Discharge to equilibrium DE Time (msec)

-20J

P Max energy into FRC from 0.2t0 0.7 ms =

P__ £60KW + 10 kW
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FRC Particle Confinement with RMF. —. .

.......... 2y
Avg. Power lost from RMF antenna: Py, » 40 KW ‘ﬁp <

(classical h, at kT, =33 ¢€V) Py =40 kW Beg &

Power lost through ion equilibration: R i E
P, = 2.5x10¥ N-n/T 2 = 6 KW
Power lost due to impurity radiation: :n::;“'h.o W
P =103 0, -n:Vol = 14kwW , . , , ]
Assume the remaining power loss is convective: T, 402- W
p P, =E, dN/dt= 20 kw e :

During equilibrium phase (dashed lines):

N 2OF | i
dN/dt = dE /dt = 0 <1ols>1,oﬂ

(Loss per ) {Lossto ionize and heat}

E, =5/2KT, + {52 KT, +E,,,J = 3x1017] E, ﬁp—*m\
) sk : 3
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For 15eV <kT,<50eV
O<t<lms

and

From CO, doping experiments:
C @0.5%,

N =<n>-Vol- = 1.8x10%8
N = 0.01<n> = 8x10% m'3

P_3 14kwW

O @0.5%

(C and O)

<Z7Z>_ 2T
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o g5t

(Wm?)
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10—34 I

F gt = 10° (M)

[

103

equilibrium
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Low h. Required For Reactor .
Efficiency withB,, < 100G =~ #e<”

Empirical flux lifetime scaling: t; =r2/16D. = 40x./2r4(10cm)n,(10%° nv3).

High Density Resistivity Scaling: | D, = - = 9 - m?/s
M xn{lo?m )

mavin, i mner(Daw)Y?  n(0P)w?(10°) DY,

g_ \/Ee R, 6 _ J2B,, - 0.007B,,(G)
| =

Need 0.2newr2» BJm b 9 0.013B,,(G)

I \/n(A0%) D (M?/5) By(T)
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Recent Low DenS|ty Experlments P

he 15

LSX Scding: D, = = m?/s
m, J X ,N(10%m 3)

Device| r. s Be io T, N D~ (m°/s)
(cm) | (cm) | (kG) |(mwb)| (eV) | (10™) | scaled | meas

LSX | 45 14 8 45 | 1500 | 10 9 9
LSX | 45 22 4 95 | 300 | 13 6 6
TCS | 45 23 14 | 37 | 200 | 25 14 2%
TCS | 45 18 1.4 1.8 | 350 | 1.4 20 10
FIX | 40 16 04 | 04 | 100 | 04 38 11
STX | 23 20 01 | 035 | 50 | 0.05| 75 30"

+ Except for the higher density TCS* case, which is obviously influenced
by impurities, the measured resistivity at low densitiesis at least afactor
of two better than the LSX based (high density) empirical scaling.

+ Considerable improvement is still needed for RMF to be efficient at 102
m3 densities.
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Development Path e
g _ 0.007B,,(G)
| n@0P)WY?(MHZ)r/(m)y/Da (M/s)
Parameter STX STX/ug TCS POP Reactor
R (m) 0.25 0.25 0.45 0.50 2.50
Be (T) 0.01 0.03 0.10 0.3 1.25
ne (10°° m™) 0.05 0.15 0.50 1.0 2.0 *T =T
Te (keV) 0.05" 0.15" 0.25* 1.0* 10* : €
w (10° s 2 2 1 0.5 0.1 AT s
Bo/mwnee(rs?/4) 0.5 0.5 0.25 0.6 0.3 Ti» lev
Bw (G) 25 75 50-75 50 100
g/l 12/+/D~ | 12/-/D. 2-3/4/D~  |1.2/4/D» | 0.6/-/D.
f (Wb) 0.35x10°° 1.0x10® 0.01 0.04 4
s 2 5.5 2.3 4.0 20

¢ STX/upgrade will test ability to reach higher T, as RMF power increases.
¢ TCSwill test ability to achieve smaller h. with hot ions as size increases.
+ POP device would investigate major physics questionsin a TCS sized device.
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lon Spin-up sl

+ Either neutral ion friction, n,, or, equivalently, fueling, n, = nis
required to reach a steady-state ion velocity vi, = V/(1 + min/mgn.)

¢ n, =3.5x10° D.(m?/s), so would require fueling rate of 103 sectif D, =
1 m?/sto prevent ions from spinning up to 1/2 electron speed. Thisis
clearly impractical for areactor.

¢ Two Solutions;

— Central fueling at field null will provide outward v, which can greatly
reduce RMF power requirements, and thus RMF torque on el ectrons.

— Neutral beams can be injected opposite RMF direction providing large
source of oppositely directed angular momentum (since v, << V).
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¢

Summary & Conclusions Tre

RMF current drive has been demonstrated to work for standard FRC
with B, << B,. Well modeled by numerical calculations with
synchronous electron rotation.

RMF drive necessarily produces edge current which may be stabilizing
influence.

RMF frequency must be carefully chosen to match FRC parameters.

Key parameter is effective resistivity which will determine required
RMF strength and power. Central fueling could greatly reduce RMF
power requirement and mitigate ion spin-up problem.

Critical experiments will be carried out in the next few years using the
STX and TCSfacilities.
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